Properties and Uses of RNA Reference Materials in a Breast Cancer Clinical Study

Matthew Marton

Merck & Co., Inc.
Rosetta Inpharmatics, LLC
March 28, 2003

Properties of Gene Expression Reference Material

"Begin with the end in mind," Stephen Covey

Validation: Demonstration by objective evidence that one's platform or experiment reproducibly achieves pre-determined performance specifications

Uses of the RNA Reference

Intended Uses > Requirements > Design Specifications

> Testing > Validation

Use # 1: Platform Validation (Evaluation)

Demonstrate that one's platform reproducibly achieves predetermined performance specifications

Use # 2: Experiment Validation (Internal Standard)

Demonstrate that each experiment achieved performance specifications using transcripts spiked into one's sample

Use #3: Reference in Individual Experiments

May be only applicable to ratio-based microarray experiments; one of the channels is the reference material

Properties of Gene Expression Reference Material

- ◆ Can be used to *validate one's platform* against explicit performance standards *in a general sense* on a regular basis (daily, weekly, monthly, after process change, etc).
- ◆ Can be used to validate individual experimental measurements (RT-PCR reactions, microarray hybridizations).
- Is applicable to many gene expression platforms (e.g., intensitybased and ratio-based microarrays, RT-PCR)
- The reference material should mimic total RNA or mRNA

Properties of Gene Expression Reference Material

- The reference standard may be either "natural" (cell-derived) or "synthetic" (in vitro-generated polyA+ transcripts)
- NIST should not have to produce a new "batch" or "lot" of reference material more than annually
- Traceable to standard physical/chemical properties, such as UV spectrophotometer absorbance
- "Lot to lot variability" needs to be carefully defined.
- This list is just a starting point

Possible Embodiments of the RNA Reference

Intended Uses > Requirements > Design Specifications > Testing > Validation

	Cell Derived Population Total RNA	Synthetic RNA pool created by synthetic library	Set of 100s-1000s synthetic transcript pairs at different concentrations	Set of 10 synthetic transcript pairs at different concentrations
Uses	Use # 1 (platform), Use # 3 (reference)	Use # 1 (platform), Use # 3 (reference)	Use # 1 (platform), Use # 2 (spike-ins)	Use # 2 (spike-ins)
Timeline to Availability	Immediate	Longer-term	Mid-Term	Short-term
Traceability to traditional standard	None ? (RT-PCR?)	None ? (RT-PCR?)	UV-spec, dilution into a mix	UV-Spec, dilution into a mix
Experience	Rosetta uses Jurkat/ K562 as standards to validate platform	None ??	Limited	Significant (Rosetta has done > 50000 hybs)
	Commercialized Product. Could develop standard based on subset of messages.	Development required	Define the mRNAs	Currently in use, not commercialized
Species dependent?	YES; separate standard required for each species	YES; separate standard required for each species	Possibly not	NO; OK in human, monkey, mouse, rat, plant, yeast
Lot to Lot Reproducibility	Lower	Unsure	High	High
NIST Contribution	Produce and/or certify primary standard	Define pool, then produce and/or certify primary standard	Define set, then produce and/or certify primary standard	Produce and/or certify primary standard

Experience of Using RNA References

Use # 1: Platform Performance Validation

Do you get the "same results" when you do it again?

Reasons why platform performance may change

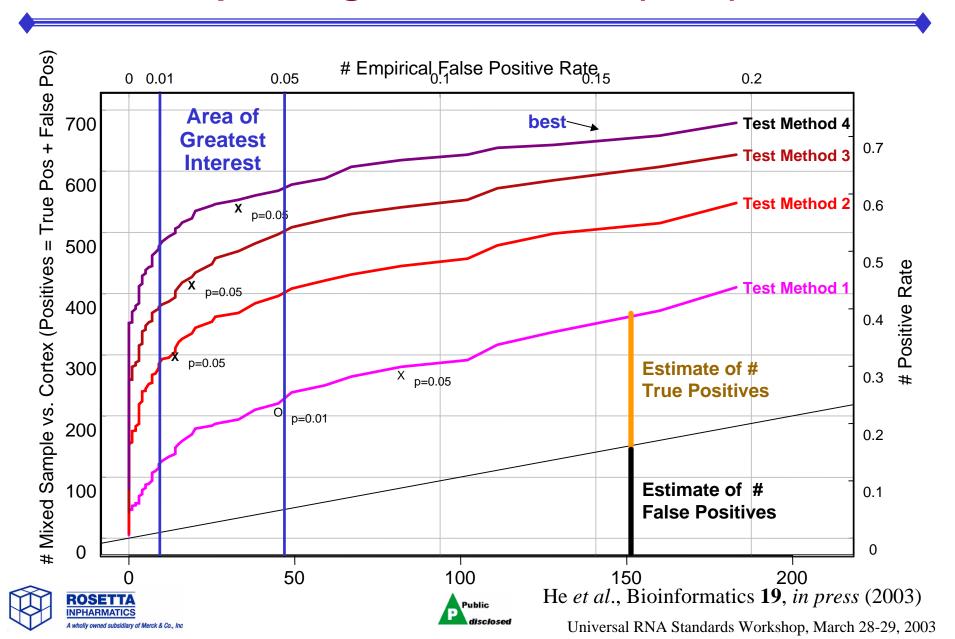
- Process improvements (cost, throughput, quality)
- Different individuals join laboratory
- Variation in protocol (incomplete or not fully understood SOPs)
- Environmental conditions
- Reagent lots change (inadequate vendor specifications)
- Uncalibrated or malfunctioning equipment
- Microarray format or quality changes
- Vendor or custom software change

Aspects of a Platform that Require Metrics

Sample Processing

- Sensitivity and Specificity (ROC curve)
- Linearity
 Assay linear over X logs

PLUS


Everything needed to validate an individual experiment

Device performance

E.g., microarray, if purchased or produced separately

Receiver Operating Characteristic (ROC) curve

Experience of Using RNA References

Use # 2: Experiment Validation / Internal Standard

- ◆ Transcripts spiked into one's sample
- Parameters that should be validated in every single experiment

Sample Identity Sample Processing

Sensitivity

Compare the measured ratio to the intended ratio of the transcript spiked in at very low copies per cell

Reproducibility

Measure the standard deviation of the log ratio of the expressed gene replicates

Accuracy

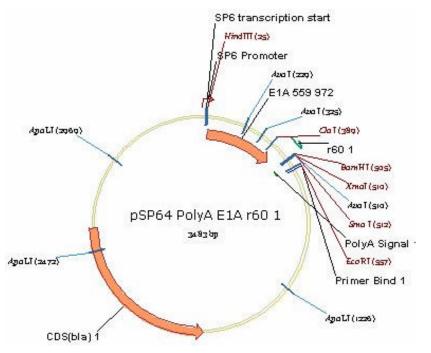
Compare the expressed ratio to the intended ratio

Device performance

E.g., microarray, if purchased or produced separately

Experience of Using RNA References

Use # 2: Experiment Validation / Internal Standard


Transcripts spiked into one's sample

Sample A Sample B total RNA total RNA + Spike-in mRNAs + Spike-in mRNAs abundance set A abundance set B Amplify/Label Cy3 Amplify/Label Cy5 B vs. A В VS.

Synthetic Transcripts as an Internal Standard

Construction of a plasmids containing unique 60mers

60-mers cloned into Ad5 E1a viral gene, upstream of polyA+ tail

- ♦ Willing to make publicly available to NIST
- ♦ Validated by > 40,000 hybridizations
- ◆ Successfully used in human, mouse, rat, plants, monkey, yeast
- Amenable to many platforms

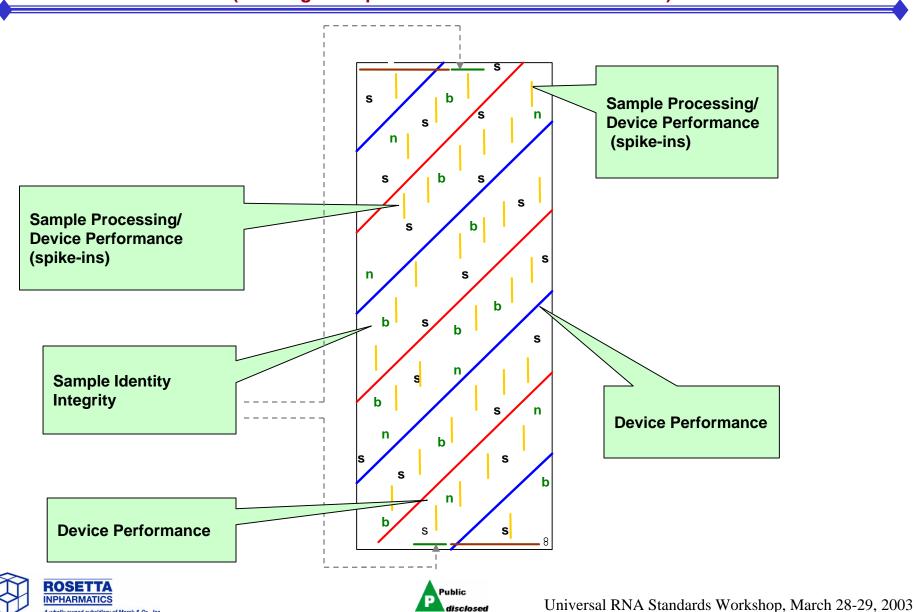
Nature Biotechnology 19, 342 (2001)

Example of "cocktails" of Spike-ins in two abundance sets:

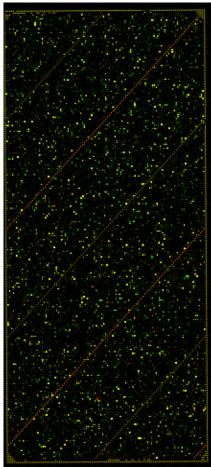
Usable in intensity- and ratio-based platforms

Purpose	Copies per cell * cocktail 11	Copies per cell * cocktail 12	Ratio	# Copies of each probe on array
Normalization	100	100	1:1	30
Normalization	10	10	1:1	30
Accuracy of ratio	10	100	1:10	30
Accuracy of ratio	100	10	10:1	30
Sensitivity and specificity	10	30	1:3	30
Sensitivity and specificity	30	10	3:1	30
Sensitivity	3	9	1:3	30
Sensitivity	9	3	3:1	30
Sensitivity	0.5	1.5	1:3	30
Sensitivity	1.5	0.5	3:1	30

- Two cocktails, one in each channel, each containing 10 synthetic mRNAs
- 300 features randomly distributed across array to detect spike-ins

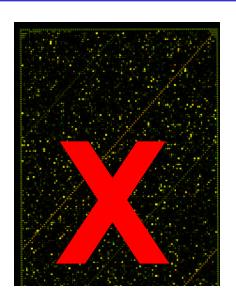

Synthetic Transcripts as an Internal Standard

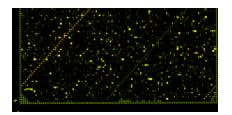
Parameter		Pass
Sensitivity:	Ability to detect spike-ins at lowest abundance concentration	
Accuracy:	Expressed ratio is within X % of the intended ratio	
Reproducibility:	Measured gene expression ratios provide self consistent results between repeated features on the array	


Array Pattern Template

(Drawings and placement of features not to scale)

A wholly owned subsidiary of Merck & Co., Inc.


Steps Toward Validated Data Using Spike-in Methods in a Breast Cancer Study


Passes All metrics

Validated Data

Which gives validated data?

Fails Reproducibility Data Not Trustworthy

Nature **415**, 530 (2002) *NEJM* **347**, 1999 (2002)

Next Steps

- "Begin with the end in mind"
- Develop formal requirements for NIST based on how the standards will be used
- Multiple types of standards may be required Complex RNAs for platform evaluation Simple spike-in pools
- ◆ Form focus groups to design specs to meet requirements Decide on embodiments ('natural', synthetic, etc)

"References"

- He *et al.*, Microarray standard data set and figures of merit for comparing data processing methods and experiment designs. Bioinformatics **19**, *in press* (2003).
- van de Vijver MJ, et al., A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002 Dec 19;347(25): 1999-2009.
- van 't Veer LJ, et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002 Jan 31;415(6871):530-6.
- Hughes TR, et al., Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. 2001 Apr;19(4):342-7.

Supplemental Slides

Sensitivity

Intended Uses

Requirements > DesignSpecifications

Design > Testing > Validation

Spike-in	Cocktail 11	Cocktail 12	
Transcript	copies/cell	copies/cell	Ratio
r60_a97	0.5	1.5	1:3
r60_n11	1.5	0.5	3:1

- Purpose of the ratio sensitivity metric is to assess the quality of the sample processing
- Ratio sensitivity is assessed by comparing the measured ratio to the intended ratio of the mRNA that is spiked-in at very low copies per cell
- The measured ratio should be within X% of the intended ratio

Reproducibility

Intended Uses

Requirements > Design
Specifications

> Testing > Validation

Spike-in	Cocktail 11	Cocktail 12	
Transcript	copies/cell	copies/cell	Ratio
r60_1	10	10	1:1
r60_a22	10	100	1:10
r60_n9	100	10	10:1
r60_a104	10	30	1:3
r60_a107	30	10	3:1

- Purpose of the spatial ratio reproducibility metric is to assess the variability of the data due to all factors from array synthesis to scanner gradients
- Multiple oligonucleotides complementary to five spiked-in synthetic mRNAs are randomly distributed across the array
- Spatial ratio reproducibility is assessed by measuring the standard deviation of the log ratio of the expressed gene replicates.
- For any of the five expressed ratios, the standard deviation should not exceed log(ratio) of X.XX (Coefficient of variation < X%)

Accuracy

Intended Uses

Requirements > Design
Specifications

> Testing > Validation

Spike-in	Cocktail 11	Cocktail 12	
Transcript	copies/cell	copies/cell	Ratio
r60_a104	10	30	1:3
r60_a107	30	10	3:1

- Purpose of the ratio accuracy metric is to assess the quality of the sample processing
- Multiple oligonucleotides complementary to two spiked-in synthetic mRNAs are randomly distributed across the array
- Ratio accuracy is assessed by comparing the expressed ratio to the intended ratio
- The standard deviation of the expressed ratios should not exceed a log(ratio)
 of X.XX and the expressed ratio should be within X % of the intended ratio

